Abstract

A liquid desiccant system (using CaCl 2) is presented for air dehumidification using solar energy or any other low grade energy to power the system. The system utilizes two packed beds of counterflow between an air stream and a solution of liquid desiccant for the processes of air dehumidification and solution regeneration. To simplify the prediction of the performance of the system an effectiveness of heat transfer and an effectiveness of mass transfer in the packed beds are defined. A finite difference model is developed to model the heat and mass transfer in packed beds during the air dehumidification mode and the solution regeneration mode. This finite difference model is used to calculate the effectiveness of heat and mass transfer in the packed beds at various bed heights, various air and solution flow rates, various inlet temperatures of air and solution to the bed, and various concentrations of CaCl 2 solution at the bed entrance. Charts of the effectiveness of heat and mass transfer are presented in a convenient form. A designer of a liquid desiccant system may use the charts in predicting the performance of these systems without having to use the finite difference model for this purpose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call