Abstract
A Lagrangian approach was used in CFD code GASFLOW to describe particle dispersion in turbulent flows. One-way coupling between fluid and particle is often used due to its simplicity of implementation. However, in case of higher particle volume fraction or mass loading in the continuous phase, one-way coupling is not sufficient to simulate the interaction between fluid and particles. For instance, the liquid droplets released by a spray nozzle in the nuclear power plant will lead to a strong gas entrainment, and consequently impact the gas flow field. When the volume fraction of the discrete phase is not negligible compared to the continuous phase, the interaction between the continuous fluid and dispersed phase becomes significant. Two-way momentum coupling between fluid and solid particles was developed in CFD code GASFLOW. The dynamics of the discrete particles was solved by an implicit algorithm to ensure the numerical stability. The contribution of all particles to a fluid cell was treated as the source term to the continuous phase which was solved with Arbitrary-Lagrangian-Eulerian (ALE) methodology. In order to verify and validate the code, the calculation results were then compared to theoretical results, predictions of other CFD codes and experimental data. Predictions compared favorably with the experimental data. It indicates that the effect of two-way coupling is significant when the volume fraction of discrete phase is not negligible. Two-way coupling of mass, energy and turbulence will be implemented in the future development of the GASFLOW code.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.