Abstract

In search of their optimal performance athletes will alter their pacing strategy according to intrinsic and extrinsic physiological, psychological and environmental factors. However, the effect of some of these variables on pacing and exercise performance remains somewhat unclear. Therefore, the aim of this meta-analysis was to provide an overview as to how manipulation of different extrinsic factors affects pacing strategy and exercise performance. Only self-paced exercise studies that provided control and intervention group(s), reported trial variance for power output, disclosed the type of feedback received or withheld, and where time-trial power output data could be segmented into start, middle and end sections; were included in the meta-analysis. Studies with similar themes were grouped together to determine the mean difference (MD) with 95% confidence intervals (CIs) between control and intervention trials for: hypoxia, hyperoxia, heat-stress, pre-cooling, and various forms of feedback. A total of 26 studies with cycling as the exercise modality were included in the meta-analysis. Of these, four studies manipulated oxygen availability, eleven manipulated heat-stress, four implemented pre-cooling interventions and seven studies manipulated various forms of feedback. Mean power output (MPO) was significantly reduced in the middle and end sections (p < 0.05), but not the start section of hypoxia and heat-stress trials compared to the control trials. In contrast, there was no significant change in trial or section MPO for hyperoxic or pre-cooling conditions compared to the control condition (p > 0.05). Negative feedback improved overall trial MPO and MPO in the middle section of trials (p < 0.05), while informed feedback improved overall trial MPO (p < 0.05). However, positive, neutral and no feedback had no significant effect on overall trial or section MPO (p > 0.05). The available data suggests exercise regulation in hypoxia and heat-stress is delayed in the start section of trials, before significant reductions in MPO occur in the middle and end of the trial. Additionally, negative feedback involving performance deception may afford an upward shift in MPO in the middle section of the trial improving overall performance. Finally, performance improvements can be retained when participants are informed of the deception.

Highlights

  • The ability to appropriately distribute energy expenditure throughout an exercise task is critical in order to optimize athletic performance

  • In total 331 articles were found, out of which 185 were identified as peer-reviewed controlled studies. These articles were evaluated according to the specified inclusion criteria (Figure 1) and we identified 26 studies with a total number of 351 subjects that met all inclusion criteria

  • One study (Castle et al, 2012) analyzed the effects of heat-stress or deceiving participants of ambient and core temperature by providing positive deceptive feedback, data were included in two themes, heat-stress and feedback, respectively

Read more

Summary

Introduction

The ability to appropriately distribute energy expenditure throughout an exercise task is critical in order to optimize athletic performance Several models have been proposed to explain this phenomena including: the teleoanticipatory theory (Ulmer, 1996; St. Clair Gibson et al, 2006), the central governor model (Noakes et al, 2001), the perception based model (Tucker, 2009), the pacing awareness model (Edwards and Polman, 2013) and the psychobiological model (Marcora, 2010; Pageaux, 2014). Clair Gibson et al, 2006), the central governor model (Noakes et al, 2001), the perception based model (Tucker, 2009), the pacing awareness model (Edwards and Polman, 2013) and the psychobiological model (Marcora, 2010; Pageaux, 2014) Many of these models, not all, acknowledge that afferent sensory feedback from various physiological systems is received and regulated within the brain and integrated into the pacing strategy as a person responds to ongoing internal stimuli, as well as environmental factors and other external stimuli (Noakes et al, 2001, 2005; St. Clair Gibson and Noakes, 2004). Factors such as knowledge of the task duration or distance remaining (Swart et al, 2009), memory of prior experiences (Mauger et al, 2009), and motivation and mood (de Morree and Marcora, 2013) are thought to be important factors in the regulation of exercise intensity

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.