Abstract

ABSTRACT The Microbial Desalination Cell (MDC) stands out as an innovative and a sustainable technology for both renewable energy generation and water treatment. The choice of electron acceptor significantly influences the efficiency of electricity flow. This study focuses on exploring the MDC performance under different conditions, including variations in cathode electron acceptors, initial pH levels, and hydraulic retention time (HRT). The investigation assesses simultaneous reduction of TDS and power generation from Caspian Sea water, a prominent saline water source in northern Iran, in both open-circuit (OC) and closed-circuit (CC) modes. The findings reveal that sodium hypochlorite, potassium permanganate, and potassium bromate as catholyte achieved TDS reduction rates of 84%, 77%, and 72%, respectively, under CC conditions at pH 5. Furthermore, it was observed that increasing HRT and pH levels lead to a decrease in desalination efficiency and power generation. Notably, the study highlights that the maximum power density was attained using permanganate, hypochlorite, and bromate as catholyte in both OC and CC configurations. By showcasing the adaptability of MDC performance with different cathode electron acceptors under varying conditions, this research offers valuable insights for optimizing MDC efficiency when treating real saline water sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.