Abstract

Anodic metabolic rate showed regulatory influence on the desalination performance of microbial desalination cell (MDC) under open (OC) and closed circuit (CC) operations. In this study, three MDCs were tested for desalination with three different organic substrate loads 1500 ± 55 mg/L in MDC-A; 3500 ± 10 g/L in MDC-B; 4500 ± 12 g/L in MDC-C. Higher desalination and substrate removal rates were observed in CC than OC. Average desalination was MDC-C (51.4%-CC) > MDC-B (47.3%-CC) > MDC-A (45.3%-CC) and COD removal efficiencies were MDC-C (68.4%-CC) > MDC-B (64.4%-CC) > MDC-A (51.9%-CC). Increase in organic load resulted in higher desalination efficiency which was due to higher electrochemical and ionic gradient apart from anodic metabolic activity. The voltage and current density were observed to be maximum in MDC-C (685 mV; 2.16 mA/m2) followed by MDC-B (598 mV; 1.98 mA/m2) and MDC-A (501 mV; 1.76 mA/m2). This study demonstrated that the MDCs performance can be regulated by varying organic load and circuitry modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.