Abstract

Using a generalized two-fluid pictures for the charge of superconductor and ordinary Boltzmann equation for quasiparticle excitations, the effect of frequency and wave-vector dependent electromagnetic perturbation on charge imbalance near transition temperatureT C is studied. In a situatiod where both the effective charge and distribution function of quasiparticles deviate from their equilibrium values, the charge imbalance is shown to possess a propagating solution at frequencies greater than inelastic scattering rate. In situations where charge imbalance is created by injection of quasiparticles, the charge imbalance relaxation rate is shown to decrease. We also study the effect of applied perturbation on quasiparticle diffusion length and hence on superconductor—normal interface boundary resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call