Abstract

Nanoscale switching dynamics in spin-coated ferroelectric copolymer films of polyvinylidene fluoride–trifluoroethylene (PVDF–TrFE 75/25) has been investigated via high-resolution real-space imaging of electrically induced domain structure evolution using resonance-enhanced piezoresponse force microscopy. It has been shown that in strongly imprinted films application of switching pulses of opposite polarity results in qualitatively different domain switching dynamics. A distinct feature of domain dynamics is roughening of the domains walls during switching to the preferred polarization state as opposed to smooth domain boundaries during switching to the opposite direction. The observed switching behavior is explained by a combined effect of the spatially uniform built-in electric field and local disorder potential. Application of the external potential changes the balance between the two and creates conditions under which domain growth is dominated either by the average built-in electric field or local random-bond disorder potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.