Abstract

Aggregation of the biotemplates in mineralization processes is a considerable obstacle in preparing well-dispersed bio-inorganic hybrid materials. In this study, aggregation and mineralization of Tobacco mosaic virus (TMV) biotemplates were investigated as a function of the copper precursor (CuCl 2) concentration. The mean hydrodynamic radius of TMV in an aqueous CuCl 2 solution was determined by dynamic light scattering for the monitoring of the TMV aggregation. At CuCl 2 concentration of 0.5 mM or higher, the mean hydrodynamic radius of TMV increased dramatically indicating aggregation of the TMV particles. Numerical calculations on the long-range interaction energy between parallel model TMV particles agreed with the experimental observations for the TMV aggregation. Mineralization of copper precursors on the TMV biotemplates was achieved only at the CuCl 2 concentrations that induced considerable aggregation of the biotemplate. From the numerical calculations and experimental results, it was concluded that a dense copper cluster deposition cannot be achieved without aggregation of TMV templates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.