Abstract

We report the first molecular dynamics study of the effect of counterions on the charging mechanisms of a macromolecule found in an aqueous droplet that contains excess charge. To investigate the principles of the charging mechanisms of a macromolecule in a droplet, we simulate aqueous droplets that contain a poly(ethylene glycol) (PEG) molecule, sodium, and chloride ions. We study the effect of counterions by varying the concentration of the chloride ions and the temperature of the droplets. We find that the size of the droplet from which the macromolecule is released is determined by the competition between the counterions and the macromolecule for capturing the sodium ions. In droplets with radii in the range of 4 nm and smaller, [Na2Cl](+) ion complexes and sodium chloride aggregates are formed. The smaller the droplet the more pronounced is the formation of the NaCl aggregates. At very high temperature, in the larger droplets the Na(+) ions are distributed throughout the entire droplet. Therefore, the sodiated PEG is released with a higher average charge than from droplets with no counterions because it has access to a higher concentration of Na(+) ions. At moderately high temperature, the NaCl aggregates do not affect the final charge state of the macromolecule relative to the no-counterion droplets. We also report that regardless of the concentration of the counterions, the temperature plays a critical role in determining the nature of the droplet shape fluctuations that are responsible for the charging of a macromolecule and its extrusion from a droplet. At high temperature the macromolecule is released by the formation of a Taylor cone that transports ions onto the macromolecule. Differently, at lower temperature the Taylor cones are absent or have subsided. These findings provide insight into the mechanisms that macromolecules acquire their charge in droplets produced in electrospray ionization experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.