Abstract

Three constitutive laws (Skalak et al.'s law extended to area-compressible interfaces, Hooke's law and the Mooney–Rivlin law) commonly used to describe the mechanics of thin membranes are presented and compared. A small-deformation analysis of the tension–deformation relation for uniaxial extension and for isotropic dilatation allows us to establish a correspondence between the individual material parameters of the laws. A large-deformation analysis indicates that the Mooney–Rivlin law is strain softening, whereas the Skalak et al. law is strain hardening for any value of the membrane dilatation modulus. The large deformation of a capsule suspended in hyperbolic pure straining flow is then computed for several membrane constitutive laws. A capsule with a Mooney–Rivlin membrane bursts through the process of continuous elongation, whereas a capsule with a Skalak et al. membrane always reaches a steady state in the range of parameters considered. The small-deformation analysis of a spherical capsule embedded in a linear shear flow is modified to account for the effect of the membrane dilatation modulus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.