Abstract
The soft magnetic behavior of laser directed energy deposited CoCrxFeNi (x = 0 - 24 at.% Cr) alloys has been investigated as a function of chromium content. The saturation magnetization of these CoCrxFeNi alloys monotonically decreased with increasing concentration of Cr, and exhibited paramagnetic behavior at room temperature for equiatomic CoCrFeNi alloy composition. Similarly, the Curie temperature (Tc) of the ferromagnetic CoFeNi alloy linearly decreased with Cr content, while the paramagnetic equiatomic alloy indicated a ferromagnetic transition temperature of 94 K. Interestingly, all the as-deposited alloys exhibited coercivity values less than 2 Oe irrespective of the Cr content. The results indicate that the magnetic behavior of the ferromagnetic CoFeNi alloy can be systematically tuned with addition of antiferromagnetic Cr, and the additive manufacturing route was successful in rapid processing alloys of any desired composition, in a high throughput manner, with negligible chemical variation. These findings are promising for the fabrication of components for applications demanding gradient magnetic coatings and alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.