Abstract

AbstractThis article reports about the ion sheath thickness variation occurring in front of a negatively biased plate immersed in the target plasma region of a double plasma device. The target plasma is produced due to the local ionization of neutral gas by the high energetic electrons coming from the source region (main discharge region). It is observed that for an increase in cathode voltage (filament bias voltage) in the source region, the ion flux into the plate increases. As a result, the sheath at the plate contracts. Again, for an increase in source anode voltage (magnetic cage bias), the ion flux to the plate decreases. As a result, the sheath expands at the plate. The ion sheath formed at the separation grid of the device is found to expand for an increase in cathode voltage and it contracts for an increase in the anode voltage of the main discharge region. One important observation is that the applied anode bias can control the Bohm speed of the ions towards the separation grid. Furthermore, it is observed that the ion current collected by the separation grid is independent of changes in plasma density in the diffusion region but is highly dependent on the source plasma parameters. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call