Abstract

The effect of the carbon concentration on the elastic properties and martensitic microstructure of Marval X12 steel is studied using first principles calculations and phase-field simulations. The density functional theory (DFT) results predict almost no changes of the elastic moduli with an increase of C content. However, there is a sizeable change of the elastic constants due to cubic to tetragonal martensitic transformation. The elastic constants are used as input data for the 3D elastoplastic phase-field model to study the martensitic microstructure evolution in Marval X12 steel. The results, showing that lath martensite is formed in this steel, are in agreement with experiments. With increasing carbon concentration, we observe formation of mixed morphology predominantly composed of martensite laths and some martensite plates. Our results also suggest that different combinations of martensite variants are formed with increasing carbon content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.