Abstract

Martensite in carbon steels forms in different morphologies, often referred to as lath andplate martensite. The alloy composition has a strong effect on the morphology, for instance in car-bon steels there is a morphological change of the martensite microstructure from lath martensite atlow carbon contents to plate martensite at high carbon contents. In the present work a decarburizedhigh-carbon steel, enabling the isolation of carbons' influence alone, has been studied in order to in-vestigate the changes in morphology and hardness. From the results it is concluded that there is acontinuous change of hardness with increased carbon content. The increasing hardness slows down atabout 0.6 wt%C before decreasing at higher carbon contents. This is in accordance with the change inmorphology since it was found that lath martensite dominates below 0.6 wt%C and the first units ofgrain boundary martensite and plate martensite appear above 0.6 wt%C. At high carbon contents thedominating morphology is plate martensite, but retained austenite is also present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.