Abstract

In this work, the effect of doubly functionalized montmorillonite (MMT) on the structure, morphology, thermal, and tribological characteristics of the resulting polystyrene (PS) nanocomposites was investigated. The modification of the MMT was performed using a cationic surfactant and an anionic surfactant or a silane coupling agent to increase the compatibility with PS matrix. The polystyrene/organo-montmorillonite (PS/OMMT) nanocomposite particles were prepared by soap-free emulsion polymerization. The OMMT was studied using Fourier-transform infrared (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The structural and morphological changes of PS/OMMT nanocomposites were further characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The thermal stability of all the PS/OMMT nanocomposites was higher than that of the pure PS. The anti-wear properties of the polyalphaolefin (PAO) were significantly improved due to the introduction of the PS/OMMT nanocomposite particles. The nanocomposites prepared by a cationic surfactant and a silane coupling agent exhibited the best thermal stability and tribological performance. Our results provide the valuable insights needed to guide the design of lubrication and friction reducing materials.

Highlights

  • Clay-polymer nanocomposites have received great attention in recent years due to their exceptional properties, such as increased thermal stability, high fire resistance, and enhanced mechanical characteristics, compared with traditional polymer composites [1,2]

  • The St was washed with NaOH solution to remove the polymerization inhibitors, and distilled under reduced pressure before use

  • The size distribution of PS/OMMT particles was narrow and monomodal, and the particle size was approximately between 250 nm and 400 nm. These results indicated that the morphology of the polymer particles was changed by the presence of OMMT

Read more

Summary

Introduction

Clay-polymer nanocomposites have received great attention in recent years due to their exceptional properties, such as increased thermal stability, high fire resistance, and enhanced mechanical characteristics, compared with traditional polymer composites [1,2]. The improvement of many properties of clay-polymer nanocomposites could be achieved using a relatively low clay loading (usually < 10 wt %) in a polymer matrix [3]. Was one of the most widely utilized to fabricate clay-polymer nanocomposite, mainly because the MMT was available with a high aspect ratio and high expansion capacity [4]. The unit crystal structure of the MMT consisted of two silicon tetrahedral sheets and a central sheet of alumina octahedrons. The negative charge was generated on the surfaces of the MMT layers due to the isomorphic substitutions of lower valance ions (Mg2+ , Fe2+ ) for the central atoms (Al3+ , Si4+ ) in the interior crystal layers of the MMT [5].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call