Abstract

In this study, the effect of ball/powder ratios for grinding particles of a dental alloy consisting of 66%Co-28%Cr-6%Mo was investigated. Metal powders were obtained from SPEX mill, with tungsten carbide balls, setting the milling time to 60 minutes, 50% of volume of grinding vessel filled with powder and argon inert atmosphere. The ball/powder ratio was varied between 4:1, 6:1, 8:1, 10:1.The powders were characterized by XRD indicating Co as only crystalline phase present, which indicates that Cr and Mo enter into solid solution with the matrix Co. Measurement of crystallite size conducted using the Scherrer equation indicate the crystallite size about 10 to 6nm, due to the increase of the ball/powder ratio of 4:1 to 10:1. The morphology of the milled powders were analyzed by scanning electron microscopy (SEM) and indicate that the agglomerates created by the grinding process must have average sizes varying between 100μm and 200μm with the modification of the ball/powder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call