Abstract

One of the most important elements in the development of compressive strength is concrete curing, and a large temperature differential during curing may decrease strength. This exudation is caused by microcracks in the concrete caused by the continuous temperature fluctuation. By minimizing autogenous shrinkage, internal curing has become popular for reducing the danger of early-age cracking in high-performance concrete (HPC). The efficacy of internal wet curing provided by fine Attapulgite aggregate is investigated in this research. On three different HPCs, both with and without internal curing materials, the development of observed mechanical properties is investigated. Two different amounts of normal weight fine aggregate were replaced with attapulgite fine aggregates. Internal cure has been found to benefit from attapulgite fine aggregates. It has been found that adding 20% Attapulgite fine aggregates to HPC enhances the material’s characteristics, resulting in low internal stress and a significant increase in compressive strength. It should be noted that, unlike certain conventional lightweight aggregates, the different amounts of Attapulgite fine aggregates added at various ages have shown no decrease in compressive strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call