Abstract

The maximum stress induced plays vital role in fatigue life improvement of leaf springs. To reduce this maximum stress, leaves with different unassembled cambers are assembled by pulling against each other and a common curvature is established. This causes stress concentration or sets assembly stress in the assembled leaf springs which is subtractive from load stress in master leaf while it is additive to load stress for short leaves. By suitable combination of assembly stresses and stepping, it is possible to distribute the stress and improve the fatigue life of the leaf spring. The effect of assembly stresses on fatigue life of the leaf spring of a light commercial vehicle (LCV) has been studied. A proper combination of stepping and camber has been proposed by taking the design parameters into consideration, so that the stress in the leaves does not exceed maximum design stress. The theoretical fatigue life of the leaf springs with and without considering the assembly stresses is determined and compared with experimental life. The numbers of specimens are manufactured with proposed parameters and tested for load rate, fatigue life on a full scale leaf springs testing machine. The effect of stress range, maximum stress, and initial stress is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.