Abstract

The effect of the applied potential on the crystallography, morphology, optical, and electrical properties of copper-cobalt oxide (Cu2CoO3) co-electrodeposited on ITO (Indium Tin Oxide) substrate has been studied. The electrochemical behavior of Cu2CoO3 using cyclic voltammetry showed that the co-electrodeposition of Cu2CoO3 occurred at a negative potential of - 0.70 V versus SCE, following a quasi-reversible reaction controlled by the diffusion process. Chronoamperometry (CA) revealed that the nucleation and growth mechanism of Cu2CoO3 follows the instantaneous three-dimensional process according to Scharifker and Hill model. X-ray diffraction (XRD) analysis indicated that the resulting layers at different applied potentials exhibited an orthorhombic structure with a preferred orientation of the crystallites (011) plan. The morphology of the surface changes with potential applied. Furthermore, the optical properties of the copper and cobalt oxide films were investigated using UV-visible spectroscopy; showing that the band gap energy for all the materials increases when the applied potential decreases. The Cu2CoO3 layers obtained are p-type semiconductors. The acceptor density (NA) increases with decreasing applied potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call