Abstract
Oxidation resistance of stainless steels, which rely on the formation of a Cr2O3 (chromia) scale, can be further improved through minor alloying additions such as Al or Si, or by application of coatings to the exposed surfaces. Although, additions of Si to austenitic steels have demonstrated an improvement in oxidation resistance, high Si contents can be detrimental to the mechanical properties of these alloys. The application of a silica coating on the surface of the stainless steel provides improved oxidation resistance without detrimental effects on the mechanical properties. This study examines the effect of the grain size of the stainless steel on the effectiveness of a silica coating as an oxidation barrier.Fully austenitic stainless steel of composition Fe-18(wt%)Cr-20Ni-1.5Mn was produced in both coarsegrained and fine-grained form. The coarse-grained alloy, with a grain size of approximately 100 μm, was produced by casting and hot rolling. The fine-grained alloy, with a grain size of approximately 5 μm, was produced by rapid solidification powder processing, followed by consolidated by hot isostatic pressing and swaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings, annual meeting, Electron Microscopy Society of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.