Abstract

Water-based tape casting is an attractive production route for planar solid oxide fuel cells (SOFCs) due to its high productivity and reduced environmental issues. In this work planar anode supported SOFCs with thin electrolyte were prepared by water-based sequential tape casting and co-sintering. An in situ high temperature monitoring apparatus was assembled to allow the determination of free sintering shrinkage of thin green tape cast layers and to follow the curvature developed in multilayers during the entire sintering process. The instantaneous curvature developed upon co-sintering was studied as a function of the firing schedule and layer composition. It was found that by tailoring the electrode composition it is possible to reduce the shrinking rate difference between anode and electrolyte thus obtaining defect-free electrolyte, minimising the residual curvature of the half-cell and improving the electrochemical performances of the cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call