Abstract

The redox behaviors of iron oxides, which were modified with Pd, Pt, Rh, Ru, Al, Ce, Ti and Zr as additives, were investigated using temperature-programmed reaction (TPR) technique. The modified iron oxides were prepared by co-precipitation method using urea precipitant. The role of additives was also examined using XRD and SEM analysis in detail. As a result, Pd, Pt, Rh and Ru additives have an effect on promoting the reduction and lowering the re-oxidation temperature of iron oxide. Especially, it is revealed that the effect of Rh species on lowering the reduction temperature is attributed to decrease of activation energy for H 2 reduction according to Fe 2O 3 → Fe 3O 4 course. Meanwhile, Al, Ce, Ti and Zr additives played an important role in prevention of deactivation of iron oxide by repeated redox cycles. Redox performances of iron oxides were also enhanced due to cooperative effects by co-addition of Rh and another species such as Al, Ce and Zr. Finally, Fe–O/(Rh, Ce, Zr) sample exhibited good performance for H 2 evolution by water-splitting through synergistic effect of component additives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call