Abstract

Bis{1-ethyl-2-[6-(N,N-diethylcarbamoyl)-4-halogenopyridin-2-yl]benzimidazol-5-yl}methane (halogeno = chloro, LE; bromo, LF) have been synthesized as ditopic receptors for the development of lanthanide-containing helicates able to couple with biological material and to test the influence of the halogeno substituent on the wrapping process, the structure of the resulting dimetallic edifices, and the photophysical properties of the encapsulated ions. The stability of the [Eu2(L)3]6+ helicates, as determined by NMR competitive titrations, decreases by respectively one (LF) and three (LE) orders of magnitude compared to the value found for the unsubstituted ligand (LB) although it remains large, log β23 = 23.8 (LF) and 21.8 (LE) in acetonitrile. The [Ln2(LE)3]6+ helicates are shown to be isostructural in acetonitrile over the lanthanide series (Pr to Yb) and the crystal structure of [Tb2(LB)3]6+ appears to be a good model for their solution structure, as demonstrated by paramagnetic NMR measurements (lanthanide induced shift method) and relaxation time determination. Ligand LE appears to be a fair sensitiser of EuIII, the quantum yield of [Eu2(LE)3]6+ being 25% larger than that found for [Eu2(LB)3]6+, but the ligand 3ππ* state and Tb(5D4) excited level are in resonance, which limits the sensitisation of TbIII. High resolution luminescence spectra of [Eu2(LE)3]6+, both in solution and in the solid state, are presented and discussed in terms of site symmetry and vibronic coupling mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.