Abstract

In recent years, the success of deep learning has driven the development of motor imagery brain-computer interfaces (MI-BCIs) based on electroencephalography (EEG). However, unlike image or language data, motor imagery EEG signals are of multielectrodes with topology information. As a means of integrating graph topology information into feature maps, few studies studied motor imagery classification involving graph embeddings. To decode EEG signals more accurately, this paper proposes a feature-level graph embedding method and combines the method with EEGNet; this new network is called EEG_GENet. Specifically, time-domain features are obtained by convoluting raw EEG signals for each electrode. Then, the adjacent matrix, conceptualized as a graph filter, performs graph convolution and uses the time-domain features to embed the topology information. This process can also perform multi-order graph embeddings. In addition, the adjacency matrix in this paper can adapt to different brain network connectivities for different subjects. We evaluate the proposed method on two benchmark EEG datasets for motor imagery classification. Experimental results on the BCICIV-2a and High_Gamma datasets demonstrate that EEG_GENet achieves 79.57% and 96.02% classification accuracy, respectively. These results indicate that the proposed method is superior to state-of-the-art methods. In addition, various ablation experiments further verify the advantages of the feature-level graph embedding method. To conclude, the feature-level graph embedding method can improves the network's ability to decode raw motor imagery EEG signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.