Abstract
ObjectiveThe initial principal task of a Brain-Computer Interfacing (BCI) research is to extract the best feature set from a raw EEG (Electroencephalogram) signal so that it can be used for the classification of two or multiple different events. The main goal of the paper is to develop a comparative analysis among different feature extraction techniques and classification algorithms. Materials and methodsIn this present investigation, four different methodologies have been adopted to classify the recorded MI (motor imagery) EEG signal, and their comparative study has been reported. Haar Wavelet Energy (HWE), Band Power, Cross-correlation, and Spectral Entropy (SE) based Cross-correlation feature extraction techniques have been considered to obtain the necessary features set from the raw EEG signals. Four different machine learning algorithms, viz. LDA (Linear Discriminant Analysis), QDA (Quadratic Discriminant Analysis), Naïve Bayes, and Decision Tree, have been used to classify the features. ResultsThe best average classification accuracies are 92.50%, 93.12%, 72.26%, and 98.71% using the four methods. Further, these results have been compared with some recent existing methods. ConclusionThe comparative results indicate a significant accuracy level performance improvement of the proposed methods with respect to the existing one. Hence, this presented work can guide to select the best feature extraction method and the classifier algorithm for MI-based EEG signals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have