Abstract
Congestive heart failure (CHF) is a serious threat to human health. Electrocardiogram (ECG) signals have been proven to be useful in the detection of CHF. However, the low amplitude and short duration of the ECG signals, as well as the superimposed noise during the real-time acquisition of the signal, seriously affect the CHF detection. To improve the detection rate of CHF, this paper proposes a congestive heart failure detection method based on Gramian angular field (GAF) and two-dimensional symbolic phase permutation entropy (SPPE2D). The significant advantage of this method is that it reduces the sensitivity to noise, and good performance can be obtained without denoising using raw ECG signals. We segment the original ECG signals into 2 s non-overlapping segments and convert them into images using the GAF method. Then, the SPPE2D algorithm is proposed to measure the complexity between normal sinus rhythm (NSR) and CHF, and analyze the anti-noise performance of the algorithm. Finally, the SPPE2D features of GAF images are computed and input into a support vector machine (SVM) for CHF detection. Classification accuracy on the Massachusetts Institute of Technology − Beth Israel Hospital Normal Sinus Rhythm Database and Beth Israel Deaconess Medical Center Congestive Heart Failure Database is 99.59%, sensitivity is 99.42%, specificity is 99.80%, and F1-score is 99.62%. The accuracy of detecting CHF reach more than 97.75% in the other five CHF databases. The experimental results show that the method based on GAF and SPPE2D can effectively detect CHF by images of ECG signals and has good robustness. CHF can be detected using the 2 s sample lengths of ECG signals recording with high sensitivity, giving clinicians ample time to treat patients with CHF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.