Abstract

Background and ObjectiveThe congestive heart failure (CHF) is a life-threatening cardiac disease which arises when the pumping action of the heart is less than that of the normal case. This paper proposes a novel approach to design a classifier-based system for the automated detection of CHF. MethodsThe approach is founded on the use of the Stockwell (S)-transform and frequency division to analyze the time-frequency sub-band matrices stemming from electrocardiogram (ECG) signals. Then, the entropy features are evaluated from the sub-band matrices of ECG. A hybrid classification scheme is adopted taking the sparse representation classifier and the average of the distances from the nearest neighbors into account for the detection of CHF. The proposition is validated using ECG signals from CHF subjects and normal sinus rhythm from public databases. ResultsThe results reveal that the proposed system is successful for the detection of CHF with an accuracy, a sensitivity and a specificity values of 98.78%, 98.48%, and 99.09%, respectively. A comparison with the existing approaches for the detection of CHF is accomplished. ConclusionsThe time-frequency entropy features of the ECG signal in the frequency range from 11 Hz to 30 Hz have higher performance for the detection of CHF using a hybrid classifier. The approach can be used for the automated detection of CHF in tele-healthcare monitoring systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call