Abstract

Background and ObjectivesTechniques for imaging the mechanical properties of cells are needed to study how cell mechanics influence cell function and disease progression. Mechano-microscopy (a high-resolution variant of compression optical coherence elastography) generates elasticity images of a sample undergoing compression from the phase difference between optical coherence microscopy (OCM) B-scans. However, the existing mechano-microscopy signal processing chain (referred to as the algebraic method) assumes the sample stress is uniaxial and axially uniform, such that violation of these assumptions reduces the accuracy and precision of elasticity images. Furthermore, it does not account for prior information regarding the sample geometry or mechanical property distribution. In this study, we investigate the feasibility of training a conditional generative adversarial network (cGAN) to generate elasticity images from phase difference images of samples containing a cell spheroid embedded in a hydrogel. MethodsTo construct the cGAN training and simulated test sets, we generated 30,000 artificial elasticity images using a parametric model and computed the corresponding phase difference images using finite element analysis to simulate compression applied to the artificial samples. We also imaged real MCF7 breast tumor spheroids embedded in hydrogel using mechano-microscopy to construct the experimental test set and evaluated the cGAN using the algebraic elasticity images and co-registered optical coherence microscopy (OCM) and confocal fluorescence microscopy (CFM) images. ResultsComparison with the simulated test set ground truth elasticity images shows the cGAN produces a lower root mean square error (median: 3.47 kPa, 95% confidence interval (CI) [3.41, 3.52]) than the algebraic method (median: 4.91 kPa, 95% CI [4.85, 4.97]). For the experimental test set, the cGAN elasticity images contain features resembling stiff nuclei at locations corresponding to nuclei seen in the algebraic elasticity, OCM, and CFM images. Furthermore, the cGAN elasticity images are higher resolution and more robust to noise than the algebraic elasticity images. ConclusionsThe cGAN elasticity images exhibit better accuracy, spatial resolution, sensitivity, and robustness to noise than the algebraic elasticity images for both simulated and real experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.