Abstract
BackgroundPattern formation of the limb skeleton is regulated by a complex interplay of signaling centers located in the ectodermal sheath and mesenchymal core of the limb anlagen, which results, in the forelimb, in the coordinate array of humerus, radius, ulna, carpals, metacarpals and digits. Much less understood is why skeletal elements form only in the central mesenchyme of the limb, whereas muscle anlagen develop in the peripheral mesenchyme ensheathing the chondrogenic center. Classical studies have suggested a role of the limb ectoderm as a negative regulator of limb chondrogenesis.ResultsIn this paper, we investigated the molecular nature of the inhibitory influence of the ectoderm on limb chondrogenesis in the avian embryo in vivo. We show that ectoderm ablation in the early limb bud leads to increased and ectopic expression of early chondrogenic marker genes like Sox9 and Collagen II, indicating that the limb ectoderm inhibits limb chondrogenesis at an early stage of the chondrogenic cascade. To investigate the molecular nature of the inhibitory influence of the ectoderm, we ectopically expressed Wnt6, which is presently the only known Wnt expressed throughout the avian limb ectoderm, and found that Wnt6 overexpression leads to reduced expression of the early chondrogenic marker genes Sox9 and Collagen II.ConclusionOur results suggest that the inhibitory influence of the ectoderm on limb chondrogenesis acts on an early stage of chondrogenesis upsteam of Sox9 and Collagen II. We identify Wnt6 as a candidate mediator of ectodermal chondrogenic inhibition in vivo. We propose a model of Wnt-mediated centripetal patterning of the limb by the surface ectoderm.
Highlights
Pattern formation of the limb skeleton is regulated by a complex interplay of signaling centers located in the ectodermal sheath and mesenchymal core of the limb anlagen, which results, in the forelimb, in the coordinate array of humerus, radius, ulna, carpals, metacarpals and digits
We found that ectoderm removal leads to a robust upregulation of the early chondrogenic marker genes Sox9 (n = 9 for 24 h, n = 7 for 48 h) and ColIIA (Fig. 1)
Our results show that the limb ectoderm is a negative regulator of the earliest stages of chondrogenesis in developing chick limbs upstream of Sox9
Summary
Pattern formation of the limb skeleton is regulated by a complex interplay of signaling centers located in the ectodermal sheath and mesenchymal core of the limb anlagen, which results, in the forelimb, in the coordinate array of humerus, radius, ulna, carpals, metacarpals and digits. Much less understood is why skeletal elements form only in the central mesenchyme of the limb, whereas muscle anlagen develop in the peripheral mesenchyme ensheathing the chondrogenic center. The cartilaginous anlagen of the limb skeletal elements form from the centralmost region of the limb mesenchyme in a process called chondrogenesis (reviewed in [1]). Into the resident limb mesenchyme, skeletal muscle presursor cells immigrate from the somites and arrange around the central chondrogenic mesenchyme to form the limb musculature in several layers [7,8]. The marginal mesenchyme in close contact with the overlying ectoderm forms the connective tissue of the dermis
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have