Abstract

The asset wall (AW) model is widely used by energy companies to forecast the retirement size of equipment. The AW model is a method of arranging historical data in chronological order and then using extrapolation to predict trends in asset size volumes over time. However, most studies using the AW model treat all equipment as a whole and perform a flat extrapolation mechanically, ignoring the impact of technological improvements and price fluctuations. Furthermore, there are relatively few studies on the assetization of equipment replacement scale. This paper fits a Weibull distribution density function and uses Monte Carlo stochastic simulation to determine the retirement age of each piece of equipment, reducing the ambiguity and randomness generated by the AW approach of treating all equipment as a whole. This modified model is noted in this paper as the Weibull–Monte Carlo stochastic simulation asset model wall (WMCAW). The paper then investigated the assetization of equipment replacement size, comparing the three error indicators Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE) in order to select the appropriate optimization model for price forecasting from several combinations of models. Finally, the paper verified the feasibility of the WMCAW model using various types of equipment decommissioned in 1970 and compared the forecasting effects of AW and WMCAW. It is found that the curve of the equipment replacement scale predicted by WMCAW is smoother than that of AW, and the forecasting results are more stable and scientific.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.