Abstract
The analysis of the high volume of data spawned by web search engines on a daily basis allows scholars to scrutinize the relation between the user’s search preferences and impending facts. This study can be used in a variety of economics contexts. The purpose of this study is to determine whether it is possible to anticipate the unemployment rate by examining behavior. The method uses a cross-correlation technique to combine data from Google Trends with the World Bank's unemployment rate. The Autoregressive Integrated Moving Average (ARIMA), Autoregressive Integrated Moving Average with eXogenous variables (ARIMAX) and Vector Autoregression (VAR) models for unemployment rate prediction are fit using the analyzed data. The models were assessed with the various evaluation metrics of mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), median absolute error (MedAE), and maximum error (ME). The average outcome of the various evaluation metrics proved the significant performance of the models. The ARIMA (MSE = 0.26, RMSE = 0.38, MAE = 0.30, MAPE = 7.07, MedAE = 0.25, ME = 0.77), ARIMAX (MSE = 0.22, RMSE = 0.25, MAE = 0.29, MAPE = 6.94, MedAE = 0.25, ME = 0.75), and VAR (MSE = 0.09, RMSE = 0.09, MAE = 0.20, MAPE = 4.65, MedAE = 0.20, ME = 0.42) achieved significant error margins. The outcome demonstrates that Google Trends estimators improved error reduction across the board when compared to model without them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electrical Systems and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.