Abstract

In microbial fuel cells (MFCs), the anode electrode is a core structure as the catalytic area of exoelectrogens. The anode material for large-scale MFCs needs excellent bioelectrochemical performance and low fabrication costs. Herein, carbonized phenolic foam with controllable porous structures was developed as the bio-capacitor of MFCs. The proportion of sodium dodecylbenzene sulfonate (SDBS), which improved mixing and dissolution between the resin liquid and the foaming agent, was adjusted to form open pores on the foam film and skeletons, which promoted both the capacitance and biocompatibility of the anode. Within SDBS proportion from 0 to 1.2 wt%, the anode SPF-9 (0.9 wt%) obtained the best capacitance (37 ± 0.13 F g−1), electrochemical active surface area (87 ± 0.38 cm2) and hydrophilia (contact angle 79 ± 0.2°). The MFCs with SPF-9 obtained the highest power density of 3980 ± 178 mW m−2, while those of carbon-cloth anodes were 1600 ± 28 mW m–2. The biofilm of SPF-9 also demonstrated higher activity and obtained larger abundance of exoelectrogens (68 ± 0.38%). The increased capacitance and biocompatibility mainly resulted in the good performance of SPF-9. The carbonized phenolic foam anode material was worth considering for the future application of MFCs due to its superior electrochemical performance and large-quantity fabrication capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.