Abstract
Microorganisms in the soil are crucial constituents of land ecosystems, significantly influencing their structure and functionality. However, the accumulation of antibiotics in agricultural practices may negatively affect these microbial communities. The objective of this study was to explore the ecological effects of the sulfonamide drug sulfadiazine (SDZ) on the rhizosphere soil microbial communities of ryegrass (Lolium perenne L.). A potting system experiment was constructed by exposing for 45 days after treatments with different initial concentrations of SDZ (0, 1, 10, and 30 mg/kg) to assess the effects of SDZ on soil microbial diversity, bacterial-fungal co-occurrence networks, and community assembly processes. The findings indicated that SDZ treatment significantly altered the community composition, especially for bacteria in the phylum Proteobacteria and Gemmatimonadota and fungi in the phylum Mortierellomycota and Aphelidiomycota. Network analysis revealed that SDZ stress caused alterations in microbial interaction patterns, especially at high treatment concentrations, and reduced network connectivity. In addition, SDZ significantly affected microbial community assembly processes, where stochastic processes were enhanced in bacterial communities, while fungal communities showed a balance of stochastic and deterministic processes. Analysis of environmental variables revealed that the presence of SDZ may disrupt the link between soil microorganisms and soil nitrogen compounds. The results provide new perspectives for understanding the ecological impacts of antibiotic residues in agroecosystems and provide a scientific basis for soil health management.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have