Abstract

Understanding the community assembly process is a central issue in microbial ecology. In this study, we analyzed the community assembly of particle-associated (PA) and free-living (FL) surface water microbiomes in 54 sites from the headstream to the river mouth of an urban river in Japan, the river basin of which has the highest human population density in the country. Analyses were conducted from two perspectives: (1) analysis of deterministic processes considering only environmental factors using a geo-multi-omics dataset and (2) analysis of deterministic and stochastic processes to estimate the contributions of heterogeneous selection (HeS), homogeneous selection (HoS), dispersal limitation (DL), homogenizing dispersal (HD), and drift (DR) as community assembly processes using a phylogenetic bin-based null model. The variation in microbiomes was successfully explained from a deterministic perspective by environmental factors, such as organic matter–related, nitrogen metabolism, and salinity-related parameters, using multivariate statistical analysis, network analysis, and habitat prediction. In addition, we demonstrated the dominance of stochastic processes (DL, HD, and DR) over deterministic processes (HeS and HoS) in community assembly from both deterministic and stochastic perspectives. Our analysis revealed that as the distance between two sites increased, the effect of HoS sharply decreased while the effect of HeS increased, particularly between upstream and estuary sites, indicating that the salinity gradient could potentially enhance the contribution of HeS to community assembly. Our study highlights the importance of both stochastic and deterministic processes in community assembly of PA and FL surface water microbiomes in urban riverine ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call