Abstract

In detecting epileptic activity, medical experts examine the visual result of Electroencephalography signals. The visual analysis will take a lot of time and effort, due to a large amount of data. Furthermore, there are some errors in concluding the analysis result. One of the ways to analyze this quickly is to use Machine Learning (ML) methods. This study aims to evaluate the performance of 1D-CNN in identifying the given data. First, the signal will go through pre-processing using EEGLAB Toolbox which is then classified to identify epilepsy and non-epilepsy with the 1D-CNN algorithm. The results showed that the proposed method obtained high accuracy values, respectively 99,078% for the training data and 82,069% for the validation results. From the evaluation by a confusion matrix, an average accuracy of 99,31% was obtained. Based on this evaluation, the proposed model can be used as an efficient method in the process of automatic classification, detection, or identification of epileptic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.