Abstract

Deep learning for the automated detection of epileptic seizures has received much attention during recent years. In this work, one dimensional convolutional neural network (1D-CNN) and two dimensional convolutional neural network (2D-CNN) are simultaneously used on electroencephalogram (EEG) data for seizure detection. Firstly, using sliding windows without overlap on raw EEG to obtain the definite one-dimension time EEG segments (1D-T), and continuous wavelet transform (CWT) for 1D-T signals to obtain the two-dimension time-frequency representations (2D-TF). Then, 1D-CNN and 2D-CNN model architectures are used on 1D-T and 2D-TF signals for automatic classification, respectively. Finally, the classification results from 1D-CNN and 2D-CNN are showed. In the two-classification and three-classification problems of seizure detection, the highest accuracy can reach 99.92% and 99.55%, respectively. It shows that the proposed method for a benchmark clinical dataset can achieve good performance in terms of seizure detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.