Abstract

Proline cis/trans isomerization governs protein local conformational changes via its local mechanical rigidity. The amyloid-disrupting capacity of proline is widely acknowledged; however, the molecular mechanism is still not clear. To understand how proline residues in polypeptide chains influence amyloid propensity, we study several truncated sequences of the TDP-43 C-terminal region (287-322) and their triple proline variants (308PPP310). We use coarse-grained molecular simulation to study the time evolution of the process of aggregation in the early stages in an effective high-concentration condition (∼25 mM). This ensures the long time scales for protein association at laboratory concentrations. We use several experimentally determined structure templates as initial structures of monomer conformations. We carry out oligomer size analysis and cluster analysis, along with several structural measures, to characterize the size distributions of oligomers and their morphological/structural properties. We show that average oligomer size is not a good indicator of amyloid propensity. Structural order and/or morphological properties are better alternatives. We show that proline variants can efficiently maintain the formation of large "ordered" oligomers of shorter truncated sequences, i.e., 307-322. This "order" maintenance is weakened when using longer truncated sequences (i.e., 287-322), leading to the formation of "disordered" oligomers. From an energy trade-off perspective, if the entropic effect is weak (short sequence length), the shape-complementarity of proline variants effectively guides the oligomerization process to form "ordered" oligomer intermediates. This leads to a distinct aggregation pathway that promotes amyloid formation (on-pathway). Strong entropic effects (long sequence length), however, would cause the formation of "disordered" oligomers. This in turn will suppress amyloid formation (off-pathway). The proline shape-complementary effects provide a guided morphological restraint to facilitate the pathways of amyloid formation. Our study supports the importance of structure-based kinetic heterogeneity of prion-like sequence fragments in driving different aggregation pathways. This work sheds light on the role of morphological and structural order of early-stage oligomeric species in regulating amyloid-disrupting capacity by prolines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.