Abstract
Although metal ions can promote amyloid formation from many proteins, their effects on the formation of amyloid from transthyretin have not been previously studied. We therefore screened the effects of Cu(II), Zn(II), Al(III), and Fe(III) on amyloid formation from wild-type (WT) transthyretin as well as its V30M, L55P, and T119M mutants. Cu(II) and Zn(II) promoted amyloid formation from the L55P mutant of transthyretin at pH 6.5 but had little effect on amyloid formation from the other forms of the protein. Zn(II) promoted L55P amyloid formation at pH 7.4 but Cu(II) inhibited it. Cu(II) gave dose-dependent quenching of the tryptophan fluorescence of transthyretin and the fluorescence of 1-anilino-8-naphthalene sulfonate bound to it. Zn(II) gave dose-dependent quenching of the tryptophan but not the 1-anilino-8-naphthalene sulfonate fluorescence. Apparent dissociation constants for Cu(II) and Zn(II) binding at pH 7.4 of approximately 10 nM and approximately 1 microM (approximately 0.4 microM and approximately 5 microM at pH 6.5), respectively, were obtained from the quenching data. Zn(II) enhanced urea-mediated the dissociation of the L55P but not the WT transthyretin tetramer. Cu(II), depending on its concentration, either had no effect or stabilized the WT tetramer but could enhance urea-mediated dissociation of L55P.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.