Abstract
Chagas disease is a vector-borne parasitic disease caused by the flagellated protozoan Trypanosoma cruzi and transmitted to humans by a large group of bloodsucking triatomine bugs. Triatomine insects, such as Rhodnius prolixus, ingest a huge amount of blood in a single meal. Their midgut represents an important interface for triatomine–trypanosome interactions. Furthermore, the development of parasites and their vectorial transmission are closely linked to the blood feeding and digestion; thus, an understanding of their physiology is essential for the development of new strategies to control triatomines. In this study, we used label-free quantitative proteomics to identify and analyze the early effect of blood feeding on protein expression in the midgut of Rhodnius prolixus. We both identified and quantified 124 proteins in the anterior midgut (AM) and 40 in the posterior midgut (PM), which vary significantly 6 h after feeding. The detailed analysis of these proteins revealed their predominant involvement in the primary function of hematophagy, including proteases, proteases inhibitors, amino acids metabolism, primary metabolites processing, and protein folding. Interestingly, our proteomics data show a potential role of the AM in protein digestion. Moreover, proteins related to detoxification processes and innate immunity, which are largely accepted to be triggered by blood ingestion, were mildly modulated. Surprisingly, one third of blood-regulated proteins in the AM have unknown function. This work contributes to the improvement of knowledge on the digestive physiology of triatomines in the early hours post-feeding. It provides key information for selecting new putative targets for the development of triatomine control tools and their potential role in the vector competence, which could be applied to other vector species.
Highlights
Hematophagous arthropods constitute the most relevant veterinary, sanitary, and epidemiologically insect group related to vector-borne diseases [1]
40 bloodregulated proteins were identified in the posterior midgut (PM), 25 of which were up-regulated while 15 of which were down-regulated after blood feeding
In this study we report for the first time the early effect of blood meal ingestion on protein expression in the midgut of Chagas disease vector R. prolixus
Summary
Hematophagous arthropods constitute the most relevant veterinary, sanitary, and epidemiologically insect group related to vector-borne diseases [1]. They can transmit a wide range of pathogenic agents which cause different types of diseases and infections, affecting livestock, domestic animals, and people [2]. Chagas disease is the most important parasitic infection in Latin America and it is ranked as one of the most important neglected tropical disease worldwide [3] It affects about 8 million people and causing more than 14,000 deaths annually (World Health Organization, 2020) [4].
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have