Abstract
Subnanosecond dynamics of optically excited electrons bound to excited states of neutral magnesium donor centers in silicon has been investigated. Lifetimes of nonequilibrium electrons have been derived from the decay of the differential transmission at photon energies matching the intracenter and the impurity-to-conduction band transitions. In contrast to hydrogenlike shallow donors in silicon, significantly longer lifetimes have been observed. This indicates weaker two-phonon and off-resonant interactions dominate the relaxation processes in contrast to the single-intervalley-phonon-assisted impurity-phonon interactions in the case of shallow donors in silicon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.