Abstract
The analysis of land-use and land-cover (LULC) changes is crucial for rural development planning, food security monitoring, and natural resource conservation. This study focuses on detecting LULC changes in Amibara and Awash-Fentale districts from 1985 to 2021. We utilized five sets of Landsat data (Landsat 5 TM for 1985, 1995, 2002, and Landsat 8 OLI for 2015 & 2020) and applied supervised maximum likelihood classification. Accuracy assessments revealed overall accuracies ranging from 88.9% to 95.3% for Amibara and 89.5%–93.2% for Awash-Fentale. Both districts exhibited six main LULC classes: agriculture, bareland, built-up, mixed forest, shrubland, and water bodies. In Amibara LULC changes from 1985 to 2021 revealed significant shifts, maintaining its primary bareland characteristic, concentrated agriculture, and expanding Prosopis-dominated shrubland due to livestock-mediated seed dispersal. Conversely, in Awash-Fentale bareland dominance decreased from 92.28% to 67.02%, while agriculture, built-up areas, and shrubland expanded. Water bodies emerged between 2015 and 2021 which is associated with the construction of Kesem Kebena dam for sugar cane farm production. The net gains were observed in shrubland (12.9%), agriculture (5.8%), mixed forest (4.1%), water bodies (1.5%), and built-up areas (0.9%), with bareland experiencing a loss of 25.3%. In conclusion, Amibara and Awash-Fentale underwent both comparable and distinct LULC shifts, featuring prevalent bareland and central agriculture, alongside Prosopis-driven shrubland expansion due to livestock dispersal. While mixed forest exhibited fluctuations, built-up areas and water bodies remained limited. Notably, Awash-Fentale showed higher LULC variability. Understanding these land cover changes helps assess vulnerability to climate impacts like droughts and floods, enhancing climate resilience. Insights from this study can inform sustainable land-use planning, conservation strategies, and policy interventions in the Afar region and similar areas. These observations highlight the need for integrated land management approaches that balance socioeconomic development with environmental sustainability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Remote Sensing Applications: Society and Environment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.