Abstract

AbstractWe present a theoretical and experimental study of a viscous fluid layer spreading over a deep layer of denser, inviscid fluid. Specifically, we study an axisymmetric flow produced by a vertical line source. Close to the source, the flow is controlled viscously, with a balance between radial compressive stresses and hoop stresses. Further out, the flow is driven by gradients in the buoyancy force and is resisted by viscous extensional and hoop stresses. An understanding of these different fluid-mechanical relationships is developed by asymptotic analyses for early times and for the near and far fields at late times. Confirmation of the late-time, far-field behaviour is obtained from a series of laboratory experiments in which golden syrup was injected into denser solutions of potassium carbonate. We use our mathematical solutions to discuss a physical mechanism by which horizontal viscous stresses in a spreading ice shelf, such as those in West Antarctica, can buttress the grounded ice sheet that supplies it.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.