Abstract
Track assemblies are widely used to reduce vehicles’ ground pressure and improve their off-road performance. During off-road, the track tension has a significant effect on the performance of the crawler driving system. Previous control strategies only make use of the motions of partial road wheels. This paper develops a logical improvement to govern the motion of the track tensioner by using all road wheels. First, a dynamic model of the hydraulic-mechanism coupling system is established using the transfer matrix method for multibody systems and pressure-flow equations. Then, in order to get the angle of the idler arm, a modeling method of wheel envelope perimeter is developed, which is based on the locations of all wheels. Simulation results indicate that the control system maintains the wheel envelope perimeter almost constant while road wheels swing and decrease the possibility of peel-off and breakage of the track. It alleviates the track repeated stretch and keeps the tension in a stable range to reduce the fatigue damage. The control strategy can effectively reduce the peak value of the upper track tension during a vehicle passing through obstacles. This study suggests that the active track tensioning system can be implemented to improve the driving properties of tracked vehicles.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have