Abstract
The Ni silicides and Si metal-semiconductor contacts are a vital element in the state-of-the-art commercial transistor devices. The latest source/drain (S/D) engineering technology designs the S/D crystal structure (e.g. intentional incorporation of stacking faults) that strains the channel to enhance device performance. Understanding the role of structural alternation, or defects, in Si-Ni reaction is therefore important in achieving precise control of the contact formation process at an atomic scale. Here, we present a study of Si-Ni reaction by lattice-resolved in-situ transmission electron microscopy (TEM) and found that presence of defects in Si can fundamentally change the silicide nucleation mechanism and growth behavior.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have