Abstract
We study the cosmological evolution of an induced gravity model with a scale symmetry breaking potential for the scalar field and the presence of barotropic fluids. The radiation to matter transition, following inflation and reheating, influences the dynamics of such a field through its non-minimal coupling. Indeed one finds, as a consequence of such a transition, that the scalar field is shifted from the potential minimum (which is associated with a zero cosmological constant). We illustrate how, under certain conditions on the potential, such a dynamics can lead to a suitable amount of dark energy explaining the present accelerated expansion. In such an approach, however, for long enough times, the dark energy will disappear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.