Abstract
We investigate the influence of dark energy on structure formation, within five different cosmological models, namely a concordance $\Lambda$CDM model, two models with dynamical dark energy, viewed as a quintessence scalar field (using a RP and a SUGRA potential form) and two extended quintessence models (EQp and EQn) where the quintessence scalar field interacts non-minimally with gravity (scalar-tensor theories). We adopted for all models the normalization of the matter power spectrum $\sigma_{8}$ to match the CMB data. In the models with dynamical dark energy and quintessence, we describe the equation of state with $w_0\approx-0.9$, still within the range allowed by observations. For each model, we have performed hydrodynamical simulations in a cosmological box of $(300 \ {\rm{Mpc}} \ h^{-1})^{3}$ including baryons and allowing for cooling and star formation. The contemporary presence of evolving dark energy and baryon physics allows us to investigate the interplay between the different background cosmology and the evolution of the luminous matter. Since cluster baryon fraction can be used to constrain other cosmological parameters such as $\Omega_{m}$, we also analyse how dark energy influences the baryon content of galaxy clusters. We find that, in models with dynamical dark energy, the evolving cosmological background leads to different star formation rates and different formation histories of galaxy clusters, but the baryon physics is not affected in a relevant way. We investigate several proxies of the cluster mass function based on X-ray observables like temperature, luminosity, $M_{gas}$, and $Y_{gas}$. We conclude that the X-ray temperature and $M_{gas}$ functions are better diagnostic to disentangle the growth of structures among different dark energy models. [Abridged]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.