Abstract

A new model that describes a dynamic frictional contact between a viscoelastic body and an obstacle is investigated in this paper. We consider a nonlinear viscoelastic constitutive law which involves a convex subdifferential inclusion term and thermal effects. The contact condition is modeled with unilateral constraint condition for a version of normal velocity. The boundary conditions that describe the contact, friction and heat flux are govern by the generalized Clarke multivalued subdifferential. We derive a coupled system of two nonlinear first order evolution inclusions problems, which consists of a parabolic variational-hemivariational inequality for the displacement and a hemivariational inequality of parabolic type for the temperature. Then, the unique weak solvability of the contact problem is obtained by virtue of a fixed point theorem and the surjectivity result of multivalued maps. Finally, we deliver a continuous dependence result on a coupled system when the data are subjected to perturbations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.