Abstract

In this paper we deal with a viscoelastic unilateral contact problem with normal damped response. The process is assumed to be dynamic and frictionless. Normal damping function is modeled by the Clarke subdifferential of a nonconvex and nonsmooth function. First, the variational formulation of this problem is provided in the form of a nonlinear first order variational–hemivariational inequality for the velocity field. Then, based on the surjectivity results for pseudomonotone and maximal monotone operators, we obtain the unique solvability for a new class of abstract evolutionary variational-hemivariational inequalities. Finally, we apply our abstract results to prove the existence of a unique weak solution to the corresponding contact problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.