Abstract

We present theoretical and numerical investigations of vortices driven by strong dc and ac currents in long Josephson junctions described by a nonlinear integro-differential equation which takes into account nonlocal electrodynamics of films, vortex bremsstrahlung, and Cherenkov radiation amplified by the attraction of vortices to the edges of the junction. This work focuses on the dynamics of vortices in Josephson junctions in thin films where the effects of Josephson nonlocality are essential but London screening is negligible. We obtained an exact solution for a vortex driven by an arbitrary time-dependent current in an overdamped junction where the vortex turns into a phase slip if the length of the junction is shorter than a critical length which depends on current. Our analytical and numerical results show that the dynamic behavior of vortices depends crucially on the ohmic damping parameter. In overdamped junctions vortices expand as they move faster and turn into phase slips as current increases. In underdamped junctions vortices entering from the edges produce Cherenkov radiation generating cascades of expanding vortex-antivortex pairs, which ultimately drive the entire junction into a resistive phase slip state. Simulations revealed a variety of complex dynamic states of vortices under dc and ac currents which can manifest themselves in hysteretic current-voltage characteristics with jumps and regions with negative differential resistance resulting from transitions from oscillating to ballistic propagation of vortices, their interaction with pinning centers, and standing nonlinear waves in the junction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.