Abstract
We consider the edge-type Josephson junctions in thin films, for which the stray fields significantly affect the screening and tunneling currents. It is demonstrated that the spatial distribution of the phase difference ϕ across thin-film Josephson junctions is nonlocal. We find that in the limit of weak tunneling and short junctions the phase difference ϕ is a universal function. This function is proportional to the applied field H an depends only on the junction geometry. In the case of narrow thin strips we find this dependence analytically. Using this universal function we demonstrate that the maximum supercurrent across narrow junctions in thin films decays as 1/, that is much slower than 1/H for bulk junctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.